Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes

نویسندگان

  • Flavia Mascagni
  • Elena Barghini
  • Tommaso Giordani
  • Loren H. Rieseberg
  • Andrea Cavallini
  • Lucia Natali
چکیده

The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposable Element Proliferation and Genome Expansion Are Rare in Contemporary Sunflower Hybrid Populations Despite Widespread Transcriptional Activity of LTR Retrotransposons

Hybridization is a natural phenomenon that has been linked in several organismal groups to transposable element derepression and copy number amplification. A noteworthy example involves three diploid annual sunflower species from North America that have arisen via ancient hybridization between the same two parental taxa, Helianthus annuus and H. petiolaris. The genomes of the hybrid species hav...

متن کامل

Transcriptional Dynamics of LTR Retrotransposons in Early Generation and Ancient Sunflower Hybrids

Hybridization and abiotic stress are natural agents hypothesized to influence activation and proliferation of transposable elements in wild populations. In this report, we examine the effects of these agents on expression dynamics of both quiescent and transcriptionally active sublineages of long terminal repeat (LTR) retrotransposons in wild sunflower species with a notable history of transpos...

متن کامل

Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data

The most abundant transposable elements (TEs) in plant genomes are Class I long terminal repeat (LTR) retrotransposons represented by superfamilies gypsy and copia Amplification of these superfamilies directly impacts genome structure and contributes to differential patterns of genome size evolution among plant lineages. Utilizing short-read Illumina data and sequence information from a panel o...

متن کامل

Patterns of nucleotide diversity in wild and cultivated sunflower.

Interest in the level and organization of nucleotide diversity in domesticated plant lineages has recently been motivated by the potential for using association-based mapping techniques as a means for identifying the genes underlying complex traits. To date, however, such data have been available only for a relatively small number of well-characterized plant taxa. Here we provide the first deta...

متن کامل

A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus).

Genomic scans for selection are a useful tool for identifying genes underlying phenotypic transitions. In this article, we describe the results of a genome scan designed to identify candidates for genes targeted by selection during the evolution of cultivated sunflower. This work involved screening 492 loci derived from ESTs on a large panel of wild, primitive (i.e., landrace), and improved sun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015